Sponsored Links
-->

Sunday, May 27, 2018

Best electric cars 2018 UK: our pick of the best EVs you can buy ...
src: car-images.bauersecure.com

An electric car is a plug-in electric automobile that is propelled by one or more electric motors, using energy typically stored in rechargeable batteries.

Since 2008, a renaissance in electric vehicle manufacturing occurred due to advances in batteries, concerns about increasing oil prices, and the desire to reduce greenhouse gas emissions. Several national and local governments have established tax credits, subsidies, and other incentives to promote the introduction and now adoption in the mass market of new electric vehicles depending on battery size, their all-electric range and purchase price. The current maximum tax credit allowed by the US Government is US$7,500 per car. Compared with cars with internal combustion engine vehicles, electric cars are quieter and have no tailpipe emissions, and in most places, with a few exceptions, lower emissions in general.

Charging an electric car can be done at a variety of charging stations, these charging stations can be installed in both houses and public areas. The two best selling electric vehicles, the Nissan Leaf, and the Tesla Model S, have ranges reaching 151 miles (243 km) and, 335 miles (539 km) respectively.

As of June 2017, there are over 2 million electric cars in use around the world. The Nissan Leaf is the best-selling highway-capable electric car ever, with over 300,000 units sold globally by January 2018. Ranking second is the Tesla Model S with almost 213,000 units sold worldwide through December 2017.


Video Electric car



Terminology

Electric cars are a variety of electric vehicle (EV). The term "electric vehicle" refers to any vehicle that uses electric motors for propulsion, while "electric car" generally refers to highway-capable automobiles powered by electricity. Low-speed electric vehicles, classified as neighborhood electric vehicles (NEVs) in the United States, and as electric motorised quadricycles in Europe, are plug-in electric-powered microcars or city cars with limitations in terms of weight, power and maximum speed that are allowed to travel on public roads and city streets up to a certain posted speed limit, which varies by country.

While an electric car's power source is not explicitly an on-board battery, electric cars with motors powered by other energy sources are generally referred to by a different name. An electric car carrying solar panels to power it is a solar car, and an electric car powered by a gasoline generator is a form of hybrid car. Thus, an electric car that derives its power from an on-board battery pack is a form of battery electric vehicle (BEV). Most often, the term "electric car" is used to refer to battery electric vehicles.


Maps Electric car



History

In 1884, over 20 years before the Ford Model T, Thomas Parker built the first practical production electric car in London in 1884, using his own specially designed high-capacity rechargeable batteries. The Flocken Elektrowagen of 1888 was designed by German inventor Andreas Flocken. Electric cars were among the preferred methods for automobile propulsion in the late 19th century and early 20th century, providing a level of comfort and ease of operation that could not be achieved by the gasoline cars of the time. The electric vehicle stock peaked at approximately 30,000 vehicles at the turn of the 20th century.

In 1897, electric cars found their first commercial use in the USA. Based on the design of the Electrobat II, a fleet of twelve hansom cabs and one brougham were used in New York City as part of a project funded in part by the Electric Storage Battery Company of Philadelphia. During the 20th century, the main manufacturers of electric vehicles in the US were Anthony Electric, Baker, Columbia, Anderson, Edison, Riker, Milburn, Bailey Electric and others. Unlike gasoline-powered vehicles, the electric ones were less fast and less noisy, and did not require gear changes.

Advances in internal combustion engines (ICE) in the first decade of the 20th century lessened the relative advantages of the electric car. The greater range of gasoline cars, and their much quicker refueling times, made them more popular and encouraged a rapid expansion of petroleum infrastructure, making gasoline easy to find, but what proved decisive was the introduction in 1912 of the electric starter motor which replaced other, often laborious, methods of starting the ICE, such as hand-cranking.

Six electric cars held the land speed record. The last of them was the rocket-shaped La Jamais Contente, driven by Camille Jenatzy, which broke the 100 km/h (62 mph) speed barrier by reaching a top speed of 105.88 km/h (65.79 mph) on 29 April 1899.

In the early 1990s, the California Air Resources Board (CARB) began a push for more fuel-efficient, lower-emissions vehicles, with the ultimate goal being a move to zero-emissions vehicles such as electric vehicles. In response, automakers developed electric models, including the Chrysler TEVan, Ford Ranger EV pickup truck, GM EV1, and S10 EV pickup, Honda EV Plus hatchback, Nissan Altra EV miniwagon, and Toyota RAV4 EV. Both US Electricar and Solectria produced 3-phase AC Geo-bodied electric cars with the support of GM, Hughes, and Delco. These early cars were eventually withdrawn from the U.S. market.

California electric automaker Tesla Motors began development in 2004 on what would become the Tesla Roadster (2008), which was first delivered to customers in 2008. The Roadster was the first highway legal serial production all-electric car to use lithium-ion battery cells, and the first production all-electric car to travel more than 320 km (200 miles) per charge.

Tesla global sales passed 250,000 units in September 2017. The Renault-Nissan-Mitsubishi Alliance achieved the milestone of 500,000 units electric vehicles sold in October 2017. Tesla sold its 200,000th Model S in the fourth quarter of 2017. Global Leaf sales passed 300,000 units in January 2018, keeping its record as the world's top selling plug-in electric car ever.

Many countries have set goals to ban the sales of gasoline and diesel powered vehicles in the future, notably; Norway by 2025, India by 2030, Germany by 2030, France by 2040, and Britain by 2040, or 2050.


China Electric Car Output to Hit 1m Next Year | Financial Tribune
src: financialtribune.com


Economics

Total cost of ownership

As of 2018, electric cars are less expensive to run than comparable internal combustion engine vehicles due to the lower cost of repairs and energy. However, as of April 2018, electric cars on average cost more to initially buy.

A 2011 study found that the gasoline costs savings of plug-in electric cars over their lifetimes do not offset their higher purchase prices.

The Chinese auto manufacturer BYD calculated on its website in 2015 that a BYD e6 taxi over five years would give a saving of about $74,000 over the equivalent petrol consumption.

In 2018 the Australian Federal Government's advisory firm on vehicle emissions estimated the TCO for electric cars was 5 to 10 thousand dollars more per year than a roughly equivalent petrol powered car.

Purchase cost

According to a 2010 survey, around three quarters of American and British car buyers have or would consider buying an electric car, but they are unwilling to pay more for an electric car. Several national and local governments have established tax credits, subsidies, and other incentives to reduce the net purchase price of electric cars and other plug-ins.

Car manufacturers choose different strategies for EVs. For low production, converting existing platforms is the cheapest as development cost is low. For higher production, a dedicated platform may be preferred to optimize design.

Almost 80% of electric vehicles in the U.S. are leased, while the lease rate for the country's entire fleet is about 30%. In early 2018, electric compact cars of 2014 are worth 23 percent of their original sticker price, as comparable cars with combustion engines worth 41 percent.

Tesla Motors uses laptop-size cells for a cost of about $200 per kilowatt hour.

Operating cost

According to a study done in 2018, the average operating cost of an electric vehicle in the United States is $485 per year, as opposed to a Internal combustion engines is $1,117 per year.


Toyota could finally start mass producing electric cars thanks to ...
src: electrek.files.wordpress.com


Environmental aspects

Electric cars have several benefits over conventional internal combustion engine automobiles, including a significant reduction of local air pollution, especially in cities, as they do not emit harmful tailpipe pollutants such as particulates (soot), volatile organic compounds, hydrocarbons, carbon monoxide, ozone, lead, and various oxides of nitrogen. The clean air benefit may only be local because, depending on the source of the electricity used to recharge the batteries, air pollutant emissions may be shifted to the location of the generation plants. This is referred to as the long tailpipe of electric vehicles. The amount of carbon dioxide emitted depends on the emission intensity of the power sources used to charge the vehicle, the efficiency of the said vehicle and the energy wasted in the charging process, typically. For mains electricity the emission intensity varies significantly per country and within a particular country, and on the demand, the availability of renewable sources and the efficiency of the fossil fuel-based generation used at a given time.


The best electric cars of 2017
src: dgit.com


Performance

Acceleration and drivetrain design

Electric motors can provide high power-to-weight ratios, and batteries can be designed to supply the large currents to support these motors. Electric motors have very flat torque curves down to zero speed. For simplicity and reliability, many electric cars use fixed-ratio gearboxes and have no clutch.

Although some electric vehicles have very small motors, 15 kW (20 hp) or less and therefore have modest acceleration, many electric cars have large motors and brisk acceleration. In addition, the relatively constant torque of an electric motor, even at very low speeds tends to increase the acceleration performance of an electric vehicle relative to that of the same rated motor power internal combustion engine.

Electric vehicles can also use a direct motor-to-wheel configuration which increases the amount of available power. Having multiple motors connected directly to the wheels allows for each of the wheels to be used for both propulsion and as braking systems, thereby increasing traction. When not fitted with an axle, differential, or transmission, electric vehicles have less drivetrain rotational inertia.

For example, the Venturi Fetish delivers supercar acceleration despite a relatively modest 220 kW (300 hp), and top speed of around 160 km/h (100 mph). Some DC-motor-equipped drag racer EVs have simple two-speed manual transmissions to improve top speed. The Tesla Roadster (2008) 2.5 Sport can accelerate from 0 to 97 km/h (0 to 60 mph) in 3.7 seconds with a motor rated at 215 kW (288 hp). Tesla Model S P100D (Performance / 100kWh / 4-wheel drive) is capable of 2.28 seconds for 0-60 mph at a price of $140,000 [1]. As of May 2017, the P100D is the second fastest production car ever built, slower by a mere 0.08 only to a $847,975 Porsche 918 Spyder. The Wrightspeed X1 prototype created by Wrightspeed Inc was in 2009 the worlds fastest street legal electric car to accelerate from 0 to 97 km/h (0 to 60 mph), which it does in 2.9 seconds. The electric supercar Rimac Concept One can go from 0-100 km/h (0-62 mph) in 2.8 seconds using 811 kW (1,088 hp).


Will Electric Vehicles Conquer the World? | AutoStin - News and ...
src: www.autostin.com


Energy efficiency

Internal combustion engines have thermodynamic limits on efficiency, expressed as fraction of energy used to propel the vehicle compared to energy produced by burning fuel. Gasoline engines effectively use only 15% of the fuel energy content to move the vehicle or to power accessories, and diesel engines can reach on-board efficiency of 20%, while electric vehicles have on-board efficiency of over 90%, when counted against stored chemical energy, or around 80%, when counted against required energy to recharge.

Electric motors are more efficient than internal combustion engines in converting stored energy into driving a vehicle. Electric cars do not idle. Regenerative braking can recover as much as one fifth of the energy normally lost during braking.

Production and conversion electric cars typically use 10 to 23 kW·h/100 km (0.17 to 0.37 kW·h/mi). Approximately 20% of this power consumption is due to inefficiencies in charging the batteries. Tesla Motors indicates that the vehicle efficiency (including charging inefficiencies) of their lithium-ion battery powered vehicle is 12.7 kW·h/100 km (0.21 kW·h/mi) and the well-to-wheels efficiency (assuming the electricity is generated from natural gas) is 24.4 kW·h/100 km (0.39 kW·h/mi).

Cabin heating and cooling

Electric vehicles generate very little waste heat. Supplemental heat may have to be used to heat the interior of the vehicle if heat generated from battery charging/discharging cannot be used to heat the interior. While heating can be provided with an electric resistance heater, higher efficiency and integral cooling can be obtained with a reversible heat pump. Positive Temperature Coefficient (PTC) junction cooling is also attractive for its simplicity -- this kind of system is used for example in the Tesla Roadster (2008).

To avoid draining the battery and thus reducing the range, some models allow the cabin to be heated while the car is plugged in. For example, the Nissan Leaf, the Mitsubishi i-MiEV and the Tesla Model S can be pre-heated while the vehicle is plugged in.

Some electric cars, for example the Citroën Berlingo Electrique, use an auxiliary heating system (for example gasoline-fueled units manufactured by Webasto or Eberspächer) but sacrifice "green" and "Zero emissions" credentials. Cabin cooling can be augmented with solar power, or by automatically allowing outside air to flow through the car when parked. Two models of the 2010 Toyota Prius include this feature as an option.


IEA: There are now more than one million electric cars on the ...
src: www.carbonbrief.org


Safety

The safety issues of BEVs are largely dealt with by the international standard ISO 6469. This document is divided in three parts dealing with specific issues:

  • On-board electrical energy storage, i.e. the battery
  • Functional safety means and protection against failures
  • Protection of persons against electrical hazards.

Risk of fire

Like their Gasoline counterparts, electric vehicle batteries can catch fire after a crash or mechanical failure. Plug-in electric vehicle fire incidents have occurred, albeit less have occurred per mile than traditional vehicles.

The first modern crash-related fire was reported in China in May 2012, after a high-speed car crashed into a BYD e6 taxi in Shenzhen. The second reported incident occurred in the United States on October 1, 2013, when a Tesla Model S caught fire over ten minutes after the electric car hit metal debris on a highway in Kent, Washington state, and the debris punctured one of 16 modules within the battery pack. A second reported fire occurred on October 18, 2013 in Merida, Mexico. In this case the vehicle was being driven at high speed through a roundabout and crashed through a wall and into a tree. The fire broke out many minutes after the driver exited the vehicle. On November 6, 2013, a Tesla Model S being driven on Interstate 24 near Murfreesboro, Tennessee caught fire after it struck a tow hitch on the roadway, causing damage beneath the vehicle.

In the United States, General Motors ran in several cities a training program for firefighters and first responders to demonstrate the sequence of tasks required to safely disable the Chevrolet Volt's powertrain and its 12 volt electrical system, which controls its high-voltage components, and then proceed to extricate injured occupants. The Volt's high-voltage system is designed to shut down automatically in the event of an airbag deployment, and to detect a loss of communication from an airbag control module. GM also made available an Emergency Response Guide for the 2011 Volt for use by emergency responders. The guide also describes methods of disabling the high voltage system and identifies cut zone information. Nissan also published a guide for first responders that details procedures for handling a damaged 2011 Leaf at the scene of an accident, including a manual high-voltage system shutdown, rather than the automatic process built-in the car's safety systems.

Vehicle safety

Great effort is taken to keep the mass of an electric vehicle as low as possible to improve its range and endurance. However, the weight and bulk of the batteries themselves usually makes an EV heavier than a comparable gasoline vehicle, reducing range and leading to longer braking distances. However, in a collision, the occupants of a heavy vehicle will, on average, suffer fewer and less serious injuries than the occupants of a lighter vehicle; therefore, the additional weight brings safety benefits despite having a negative effect on the car's performance. They also use up interior space if packaged ineffectively. If stored under the passenger cell, not only is this not the case, they also lower the vehicles's center of gravity, increasing driving stability, thereby lowering the risk of an accident through loss of control. An accident in a 2,000 lb (900 kg) vehicle will on average cause about 50% more injuries to its occupants than a 3,000 lb (1,400 kg) vehicle. In a single car accident, and for the other car in a two car accident, the increased mass causes an increase in accelerations and hence an increase in the severity of the accident.

Some electric cars use low rolling resistance tires, which typically offer less grip than normal tires. Many electric cars have a small, light and fragile body, though, and therefore offer inadequate safety protection. The Insurance Institute for Highway Safety in America had condemned the use of low speed vehicles and "mini trucks," referred to as neighborhood electric vehicles (NEVs) when powered by electric motors, on public roads. Mindful of this, several companies (Tesla Motors, BMW, Uniti) have succeeded in keeping the body light, while making it very strong.

Hazard to pedestrians

At low speeds, electric cars produced less roadway noise as compared to vehicles propelled by internal combustion engines. Blind people or the visually impaired consider the noise of combustion engines a helpful aid while crossing streets, hence electric cars and hybrids could pose an unexpected hazard. Tests have shown that this is a valid concern, as vehicles operating in electric mode can be particularly hard to hear below 20 mph (30 km/h) for all types of road users and not only the visually impaired. At higher speeds, the sound created by tire friction and the air displaced by the vehicle start to make sufficient audible noise.

The Government of Japan, the U.S. Congress, and the European Parliament passed legislation to regulate the minimum level of sound for hybrids and plug-in electric vehicles when operating in electric mode, so that blind people and other pedestrians and cyclists can hear them coming and detect from which direction they are approaching. The Nissan Leaf was the first electric car to use Nissan's Vehicle Sound for Pedestrians system, which includes one sound for forward motion and another for reverse. As of January 2014, most of the hybrids and plug-in electric and hybrids available in the United States, Japan and Europe make warning noises using a speaker system. The Tesla Model S is one of the few electric cars without warning sounds, because Tesla Motors will wait until regulations are enacted. Volkswagen and BMW also decided to add artificial sounds to their electric drive cars only when required by regulation.

Several anti-noise and electric car advocates have opposed the introduction of artificial sounds as warning for pedestrians, as they argue that the proposed system will only increase noise pollution.. Added to this, such an introduction is based on vehicle type and not actual noise level, a concern regarding ICE vehicles which themselves are becoming quieter.


Government Inducements Required For Electric Cars - ZMR Blog
src: zmrblog.com


Controls

Presently most EV manufacturers do their best to emulate the driving experience as closely as possible to that of a car with a conventional automatic transmission that motorists in some countries are familiar with. Most models therefore have a PRNDL selector traditionally found in cars with automatic transmission despite the underlying mechanical differences. Push buttons are the easiest to implement as all modes are implemented through software on the vehicle's controller.

Even though the motor may be permanently connected to the wheels through a fixed-ratio gear and no parking pawl may be present the modes "P" and "N" will still be provided on the selector. In this case the motor is disabled in "N" and an electrically actuated hand brake provides the "P" mode.

In some cars the motor will spin slowly to provide a small amount of creep in "D", similar to a traditional automatic.

When the foot is lifted from the accelerator of an ICE, engine braking causes the car to slow. An EV would coast under these conditions, but applying mild regenerative braking instead provides a more familiar response and recharges the battery somewhat. Selecting the L mode will increase this effect for sustained downhill driving, analogous to selecting a lower gear. These features also reduce the use of the conventional brakes, significantly reducing wear and tear and maintenance costs as well as improving vehicle range.


Charge-as-You-Go Electric Cars: Sounds Great, But Do We Really ...
src: ww2.kqed.org


Batteries

While most current highway-speed electric vehicle designs focus on lithium-ion and other lithium-based variants a variety of alternative batteries can also be used. Lithium-based batteries are often chosen for their high power and energy density but have a limited shelf life and cycle lifetime which can significantly increase the running costs of the vehicle. Variants such as Lithium iron phosphate and Lithium-titanate attempt to solve the durability issues of traditional lithium-ion batteries.

Other battery types include lead acid batteries which are still the most used form of power for most of the electric vehicles used today. The initial construction costs are significantly lower than for other battery types, but the power to weight ratio is poorer than other designs, Nickel metal hydride (NiMH) which are somewhat heavier and less efficient than lithium ion, but also cheaper. Several other battery chemistries are in development such as zinc-air battery which could be much lighter, and liquid batteries that might be rapidly refilled, rather than recharged, are also under development.

Range

The range of an electric car depends on the number and type of batteries used. The weight and type of vehicle, performance demands of the driver, and the weather also have an impact just as they do on the range of internal combustion vehicles.

The range of current production electric vehicles ranges anywhere from 62 mi (100 km) (Renault Twizy) to 335 mi (540 km) (Tesla Model S 100D)

Electric cars are virtually universally fitted with an expected range display. This may take into account many factors, including battery charge, the recent average power use, the ambient temperature, driving style, air conditioning system, route topography etc. to come up with an estimated driving range. However, since factors can vary over the route, the estimate can vary from the actual achieved range. The display allows the driver able to make informed choices about driving speed and whether to, perhaps briefly, stop at a charging point en route to ensure that they have enough charge that they arrive at their destination without unexpected delay. Some roadside assistance organizations offer charge trucks to reload empty electric cars, in case of emergency.

A study in 2016 stated that 87% of US vehicle-days can be met by current affordable electric cars.

Charging

Electric cars are typically charged overnight from a charging station installed in the owner's house, or from faster charging stations found in businesses and public areas.

Within each major region of the world, electric car charging stations are essentially universal across car and charger brands, and simply plugging in a charger into an electric car will charge the car at the fastest rate that both car and charger can support. A notable exception are the Tesla line of cars, which use their own in-house chargers. Tesla cars can use standard charging equipment but require an adapter to do so.

Some companies have been experimenting with battery swapping to significantly speed of charging times.

Hybrid Vehicles

Some Electric Vehicles have built in generators, these are considered a type of hybrid vehicle.

Lifespan

Battery life should be considered when calculating the extended cost of ownership. The rate at which they expire depends on the type of battery and how they are used, as regularly over-charging batteries may lead to degradation of the range. Lithium-ion batteries degrade faster when stored at higher temperatures, when they are rapidly charged, and when they are fully charged. Many users set their cars to charge to 80% for their daily charging; which is usually enough for daily mileage, only charging them to 100% for longer trips.

Nissan stated in 2015 that thus far only 0.01 percent of batteries had to be replaced because of failures or problems and then only because of externally inflicted damage. There are few vehicles that have already covered more than 200,000 km (124,274 mi) anyway. These have no problems with the battery.

Future

Autonomous park-and-charge

Volkswagen, in collaboration with six partners, is developing V-Charge - an EU research project that is focused on automating the parking and charging of electric vehicles. The objective of this project is to develop a smart car system that allows for autonomous driving in designated areas (e.g. valet parking, park and ride) and can offer advanced driver support in urban environments. Tesla has shown interest in making an arm that automatically charges their vehicles.

Lithium availability

Many electric cars use a lithium-ion battery and an electric motor which uses rare-earth elements. The demand for lithium, heavy metals, and other specific elements (such as neodymium, boron and cobalt) required for the batteries and powertrain is expected to grow significantly due to the future sales increase of plug-in electric vehicles in the mid and long term. Some of the largest world reserves of lithium and other rare metals are located in countries with strong resource nationalism, unstable governments or hostility to U.S. interests, raising concerns about the risk of replacing dependence on foreign oil with a new dependence on hostile countries to supply strategic materials. It is estimated that there are sufficient lithium reserves to power 4 billion electric cars.

Other methods of energy storage

Experimental supercapacitors and flywheel energy storage devices offer comparable storage capacity, faster charging, and lower volatility. They have the potential to overtake batteries as the preferred rechargeable storage for EVs. The FIA included their use in its sporting regulations of energy systems for Formula One race vehicles in 2007 (for supercapacitors) and 2009 (for flywheel energy storage devices).

Solar cars

Solar cars are electric vehicles powered completely or significantly by direct solar energy, usually, through photovoltaic (PV) cells contained in solar panels that convert the sun's energy directly into electric energy.


Same Car Companies Slashing Away At EPA Emissions Rules Are ...
src: c1cleantechnicacom-wpengine.netdna-ssl.com


Electric Vehicle Charging Patents

Qualcomm, Hyundai, Ford, and Mitsubishi are the top patent holders of the close to 800 electric vehicle charging patents filed between 2014 and 2017. A majority of patents on electric vehicle charging were filed in Japan between 2014 and 2017. It is followed by the US and then by China.


Vulnerabilities of electric car charging â€
src: media.kasperskydaily.com


Infrastructure

Charging station

Battery Electric Vehicles are most commonly and conveniently charged from the power grid overnight at home, without the inconvenience of having to go to a filling station. Charging can also be done using a street, garage or shop charging station. The electricity on the grid is in turn generated from a variety of sources; such as coal, hydroelectricity, nuclear and others. Power sources such as photovoltaic solar cell panels, micro hydro or wind may also be used and are promoted because of concerns regarding global warming.

More electrical power to the car reduces charging time. A normal household outlet is between 1.5 kW (in the US, Canada, Japan, and other countries with 110 volt supply) to 3 kW (in countries with 230 V supply).

As part of its commitment to environmental sustainability, the Dutch government initiated a plan to establish over 200 recharging stations for electric vehicles across the country by 2015. The rollout was undertaken by Switzerland-based power and automation company ABB and Dutch startup Fastned, and aims to provide at least one station every 50 kilometres (31 miles) for the Netherlands' 16 million residents.

There are several types of charging machines. The Japanese-developed CHAdeMO standard is favored by Nissan, Mitsubishi, and Toyota, while the Society of Automotive Engineers' (SAE) International J1772 Combo standard is backed by GM, Ford, Volkswagen, and BMW. Both are direct-current quick-charging systems designed to charge the battery of an electric vehicle to 80 percent in approximately 20 minutes, but the two systems are incompatible. Unless the two companies cooperate, experts have warned that the momentum of the electric vehicle market will be restricted. Richard Martin, editorial director for clean technology marketing and consultant firm Navigant Research, stated:

Fast charging, however and whenever it gets built out, is going to be key for the development of a mainstream market for plug-in electric vehicles. The broader conflict between the CHAdeMO and SAE Combo connectors, we see that as a hindrance to the market over the next several years that needs to be worked out.

Research continues on ways of reducing the charging times for electric cars. The BMW i3 for example, can charge 0-80% of the battery in under 30 minutes in rapid charging mode. The superchargers developed by Tesla Motors provided up to 130 kW of charging, allowing a 50% charge in 20 minutes. Considering the size of the battery, that translated to approx. 212 km of range.

Connectors

Most electric cars have used conductive coupling to supply electricity for recharging after the California Air Resources Board settled on the SAE J1772-2001 standard as the charging interface for electric vehicles in California in June 2001. In Europe, the ACEA has decided to use the Type 2 connector from the range of IEC_62196 plug types for conductive charging of electric vehicles in the European Union as the Type 1 connector (SAE J1772-2009) does not provide for three-phase charging.

Another approach is inductive charging using a non-conducting "paddle" inserted into a slot in the car. Delco Electronics developed the Magne Charge inductive charging system around 1998 for the General Motors EV1 and it was also used for the Chevrolet S-10 EV and Toyota RAV4 EV vehicles.

Vehicle-to-grid: uploading and grid buffering

During peak load periods, when the cost of generation can be very high, electric vehicles could contribute energy to the grid. These vehicles can then be recharged during off-peak hours at cheaper rates while helping to absorb excess night time generation. Here the batteries in the vehicles serve as a distributed storage system to buffer power.


Electric Vehicle | Inhabitat - Green Design, Innovation ...
src: inhabitat.com


Politics

Electric vehicles provide for less dependence on foreign oil, which for the United States and other developed or emerging countries is cause for concern about vulnerability to oil price volatility and supply disruption. Also for many developing countries, and particularly for the poorest in Africa, high oil prices have an adverse impact on their balance of payments, hindering their economic growth. In the United States, presidential candidate Obama proposed in 2008 "1 million plug-in and electric" cars by 2015. At the end of 2015 about 550 thousand plugin-in vehicles had been sold in the USA.


Electric cars are becoming increasingly greener in the US thanks ...
src: electrek.files.wordpress.com


Currently available electric cars

Highway capable

As of December 2015, there were over 30 models of highway-capable all-electric passenger cars and utility vans available in the market for retail sales. The global stock of light-duty all-electric vehicles totaled 739,810 units, out of a global stock of 1.257 million light-duty plug-in electric vehicles on the road at the end of 2015. Cumulative global sales of all-electric cars and vans passed the 1 million unit milestone in September 2016.

The Renault-Nissan-Mitsubishi Alliance is the world's leading all-electric vehicle manufacturer. The Alliance reached sales of 500,000 all-electric vehicles delivered globally in October 2017, including those manufactured by Mitsubishi Motors, now part of the Alliance.

As of September 2017, Tesla, Inc. ranked as the all-time second best-selling all-electric vehicle manufacturer with more than 250,000 electric cars worldwide since delivery of its first Tesla Roadster in 2008. Its Model S was the world's best selling plug-in electric car for two years in a row, 2015 and 2016. In early October 2016, Tesla reported that combined miles driven by its three models have accumulated 3 billion electric miles (4.8 billion km) traveled. The first billion mark was recorded in June 2015 and the second billion in April 2016. As of December 2017,BMW ranked as the third best selling all-electric vehicle manufacturer with about 98,000 i3s sold globally, including the REx variant.

The world's all-time top selling highway legal electric car is the Nissan Leaf, released in December 2010, with global sales of more than 300,000 units through January 2018. The Tesla Model S ranks second with global sales of 212,874 cars delivered as of December 2017. The Renault Kangoo Z.E. utility van is the leader of the light-duty all-electric segment with global sales of 29,523 units through December 2017. In December 2014, Nissan announced that Leaf owners have accumulated together 1 billion kilometers (620 million miles) driven. This amount of electric miles translates into saving 180 million kilograms of CO2 emissions by driving an electric car in comparison to travelling with a gasoline-powered car. In December 2016, Nissan reported that Leaf owners worldwide achieved the milestone of 3 billion kilometers (1.9 billion miles) driven collectively through November 2016.

The following table list the all-time best-selling highway-capable all-electric passenger cars with cumulative global sales of around or more than 75,000 units since their inception through early 2018:

Electric cars by country

As of December 2016, more than two million highway legal plug-in electric passenger cars and light utility vehicles (PEVs) have been sold worldwide. The stock of plug-in electric cars represented 0.15% of the 1.4 billion motor vehicles on the world's roads by the end of 2016, up from 0.1% in 2015. The three million milestone was achieved in November 2017.

Sales of plug-in electric vehicles achieved the one million milestone in September 2015, almost twice as fast as hybrid electric vehicles (HEV). While it took four years and 10 months for the PEV segment to reach one-million sales, it took more than around nine years and a few months for HEVs to reach its first million sales. Cumulative global sales of highway-capable light-duty pure electric vehicles passed one million units in total, globally, in September 2016. When global sales are broken down by type of powertrain, all-electric cars have oversold plug-in hybrids, with pure electrics capturing 61% of the global stock of two million light-duty plug-ins on the world's roads by the end of 2016.


Owning An Electric Car Is Twice As Cheap As Owning A Gas Vehicle
src: images.fastcompany.net


Government subsidy

Several countries have established grants and tax credits for the purchase of new electric cars, typically depending on battery size. The U.S. offers a federal income tax credit up to US$7,500, and several states have additional incentives. The UK offers a Plug-in Car Grant up to a maximum of GB£4,500 (US$5,929). The U.S. government also pledged US$2.4 billion in federal grants for the development of advanced technologies for electric cars and batteries, despite the fact that overall sales aren't increasing at the expected speed.

As of April 2011, 15 European Union member states provide economic incentives for the purchase of new electrically chargeable vehicles, which consist of tax reductions and exemptions, as well as of bonus payments for buyers of all-electric and plug-in hybrid vehicles, hybrid electric vehicles, and some alternative fuel vehicles.


Top 5: Electric cars that will change your mind about them. - Roadshow
src: cnet1.cbsistatic.com


See also

  • Battery electric vehicle
  • Electric boat
  • Electric bus
  • Electric car energy efficiency
  • Electric motorcycles and scooters
  • Electric motorsport
  • Electric vehicle
  • Electric vehicle conversion
  • Plug-in electric vehicle
  • List of electric cars currently available

California continues to lead the way on electric vehicles - Curbed
src: cdn.vox-cdn.com


References


Uniti - Electric car | Equity crowdfunding 2017 - YouTube
src: i.ytimg.com


External links

  • How an electric car works

Source of article : Wikipedia